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Multi-vehicle Cooperative Search with Uncertain Prior Information 

Chunlei Zhang * Raul Ordonez * Corey Schumacher ^ 

Abstract 

We present a possible solution for the multi-vehicle cooperative search problem via the surrogate op- 
timization method. We establish a discrete mathematical model for the multi-vehicle cooperative search 
stationary target with uncertain prior information. We reformulate the Past, Present and Predicted 
Future (PPP) algorithm we introduced in previous work based on the new niiodel and propose an imple- 
mentation to adapt to the new scenau-io. Monte Carlo simulations indicate that the new implementation 
achieves better performance. Moreover, the scalability of the PPP algorithm is addressed. 

1    Introduction 

The idea of multiple uninhabited autonomous vehicles (UAVs) able to adaptively react to their environment 
and learn about their surroundings while following either an individual or a communal agenda is an intriguing 
issue. Achieving such a degree of control and producing such sophisticated behavior remains an elusive goal 
that presents considerable challenges due to the inherent complexity of the task, and also because it may 
be approached from a variety of difierent angles. The problem of multi-vehicle coordination and control has 
been receiving an extraordinary amount of attention during the past few years due to its critical importance 
for a myriad of applications. 

Existing work on multi-vehicle control focuses on receding-horizon planning (that is, optimization methods) 
and hierarchical structures. The research reported in this paper benefits from previous work that follows the 
first approach. A receding horizon trajectory planner based on Mixed Integer-Linear Programmmg (MILP) 
that is capable of planning planar trajectories to a goal constrained by no-fly areas, or obstacles, and aircraft 
dynamics were proposed in [1, 2, 3]. A generalized multi-vehicle formation stabilization problem, free from 
a leader-follower architecture is defined in [4] and model predictive control (MFC) is applied. 

Game theory based cooperative decision makinig for multi-vehicle include [5, 6] and [7]. Moreover, graph 
theory is also employed extensively in multi-vehicle coordination. A disjoint path algorithm for reconfigu- 
ration of multi-vehicle was proposed in [8]. A class of triangulated graphs for algebraic representation of 
formations are introduced to specify a mission cost for a group of vehicles (9), then the obtained optimal 
control problem is solved using NTG (an optimal control program developed at Caltech). A double-graph 
model is used in [10] to treat the string stability as a kind of performance of multi-vehicle system with acyclic 
formation structures. Moreover, a theoretical explanation of using nearest neighbor rules in coordinating 
groups of mobile autonomous agents can be found in [11]. 

Related to the work on coordination of multi-vehicle are swarms and formation control. In [12, 13, 14, 15], 
the authors considered a swarm which moves in an attractant/repellent profile (i.e., a profile of nutrients 
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or toxic substances) and showed collective convergence to (divergence from) more favorable (unfavorable) 
regions of the profile. The inter-individual interactions and the interactions with the environment in the 
model in these articles used artificial potential functions, a concept that has been used extensively for robot 
navigation and control (16, 17]. The results in [18, 19, 20, 21, 22] are based on using virtual leaders and 
artificial potentials for vehicle interactions in a group to maintain the group geometry. They use the system 
kinetic energy and the artificial potential energy as a Lyapunov function to prove closed loop stability and 
employ a dissipative term to achieve asymptotic stability of the formation. Other results using artificial 
potential functions include [23], where the authors consider a distributed control approach for groups of 
robots, called the social potential fields method, which is based on artificial force laws between individual 
robots and robot groups. The force laws are inverse-power or spring force laws incorporating both attraction 
and repulsion. In [24], the dynamics of the vehicle group is decomposed into average system and shape 
system. The internal formation control is achieved by controlling the shape system, while the maneuvering 
control is achieved by the controlling of the average system. Furthermore, the role of information flow in 
formation stability was studied in [25], similar work can be found in [26]. A more recent overview of formation 
control can be found in [27]. 

This paper is based on previous research [28] and organized as follows. The next section begins with the 
formulation of our research problem, a discrete mathematical model of multi-vehicle cooperative search for 
stationary targets with uncertain prior information is introduced, and surrogate optimization [29, 30] is 
applied to the cooperative search problem. We reformulate the PPP algorithm introduced in [28] in Section 
3. A specific implementation of the PPP algorithm to fully use the prior information is proposed in Section 
4. There, Monte Carlo sunulations are used to compare these proposed schemes with exhaustive search and 
the scalability of PPP algorithm is discussed. Finally, Section 5 concludes the paper and discusses some 
future works. 

2    Problem Formulation 

2.1    Model 

For convenience, we concentrate on discrete time models within a two-dimensional plane, smce the setup 
fits nicely within the simulation environment. We assume whatever constraints exist for vehicles to be not 
dynamic, but rather kinematic in favor of focusing on high-level mechanisms originating from the group of 
vehicles. We will assume there are m vehicles and that the t"* one obeys a discrete time kinematic model 
given by 

ii,(fc-n)=<(fc)+dcos(ei(fc)) 
xU{k + l) = xi^ik)+dsm{ei{k)) 
0i{k+i) = eUk) + fi,AAk)) (1) 

where fc is the discrete time index taking values in the nonnegative integers {0,1,2,...} (fc also denotes the 
number of search steps); x\,^ and 4, are, respectively, the two Cartesian coordinates of i"" vehicle; d is a 
constant step size; flj is the orientation of the z"' vehicle; /«„ can be a nonUnear function encoding kinematic 
restrictions on the vehicles; and «* is the local'controller corresponding to the i"* vehicle. For convenience, 
let < = «,xij^ and 4 = [«)\«ir • 

In some appUcations of cooperative search, we may have access to prior information (e.g., where the targets 
are) but with uncertainty. The environment is modeled as a two-dimensional plane, the upper right quadrant 
of a Cartesian coordinate system with axes (11,12)- We may set up a Gaussian profile map which is known 
to all vehicles. The Gaussian profile encodes the possible target locations x], = [x\^ ,x\J ,i = l,...,n offered 
by the prior information as centers of the Gaussian peaks, where we assume to know the number n of targets. 

Mp{xuX2, A; = 0) = 2_, Ci exp 
(xi-xl)' + iX2-xiJ^ 

(2) 



A possible picture is in Figure 1 (a), where ij are [6,46]"^, [50,6]"^ and [40,40]"^. We encode the uncertainty 
of the prior information with the peak width Vi and the distance of the real (but unlcnown) target position 
to the center of the peak in terms of v^. For example, we can say the real target is 0.5vi,Vi, 2vi, etc., distance 
units from the center, that is, we consider the worst case scenario for each uncertainty level (e.g., ^ven a fixed 
peak width Vj = 4 as in Figure 1 (a), the blue star represents the real target, which is at one Vi uncertainty 
from the center). Furthermore, we can intentionally encode the priority level of each target as the height 
Ci of the peak (e.g., we assign Cj = 3 to the peak center located at (40,40) as the most important target). 
Thereby, we expect the vehicles to find the most important target first, and the whole search performance 
should coincide with the uncertainty level about the prior information. Overall, in this kind of scenario all 
the vehicles share Mp{xi,X2), meanwhile the vehicle sensor will sample a real target map Mt{xi,X2) (Figure 
1 (b)), 

and only obtaui two kinds of information: 0, which means no target, and 1, means the vehicle found a target. 

hiUal Prtor InfodnaUofl Map nMlTargatMap 

• • • 
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• 
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Figure 1: (a) Prior information map, (b) Real target map (c) Cell based map assumptions. 

We discretize not only the vehicles' movement, but also the proposed map as shown in Figure 1 (a). We 
will let the vehicles move from cell to cell (i.e., the center of one cell to another) rather than move along 
a smooth curve, and therefore we will start with the assumption that all vehicles move at constant speed 
and in discrete time index. Also we assume that maximum turn angles are ±135 degrees, i.e., /e„ becomes 
a saturation function. Figure 1 (c) illustrates these pomts: the triangle in the middle cell represents the 
vehicle's current position with its orientation 0^ = 0; with the assumptions of constant speed and discrete 
time index, the vehicle will only move one cell each time index; and with the assumption of maximum 
angles of turn, the vehicle will only have seven possible cells to go, which are denoted by the circles, and the 
cross denotes the cell which vehicle cannot visit since 6^ — 0. Moreover, we ignore the difference between 
diagonal step size with vertical or horizontal step size, all denoted as d for convenience. The inter-vehicle 
conununications are instantaneous, noiseless and have unbounded communication distance, i.e., we assume 
perfect communication. These assumptions together with further ones made for the Monte Carlo simulation 
will be used throughout this paper. Note that this is not a centralized coordination scheme, since if non- 
ideal communication were considered, each vehicle would have its own verison of M^ and would act upon it, 
sharing as much information as allowed by the communication channel. The level of coordination increases 
as the quality of the communication channel improves. 

A vehicle located somewhere in the terrain is clearly unable to observe it all at once in most practical 
situations. In general, then, the vehicle is only able to sample a point of the discrete map (3) at its own 
location, to the extent that its own sensors or some external information source allow it. Therefore, we may 
define the system output vector as 

2/=[j/\...,2/'"r = [M,«,xiJ,...,Mt«,0] (4) 

where j/j is the output corresponding to the i"' vehicle samplmg the proposed map function (3). Each vehicle 
can update the prior information map (2) with its collected sensor information at time index k. 

Mp{xuX2,k-\-\) = Mp{xuX2,k)-M,{xi,X2,k + l) (5) 



where • means element-wise multiplication for matrices and M,{xi,X2,k+ 1) is called sensor matrix, which 
encodes the current time's sensor information (each time, M, is reset to a matrix whose elements are 1 and 
then the places corresponding to the current vehicle locations are filled with the sensor data "0" or "1"). 
As available a priori, Mp could be used by the decentralized controller u{) to implement output feedback 
regulation on system (1), in which the search and engagement tasks may be phrased as the regulation 
objective of "flattening out" the map in Figure 1 (b) (in other words, each time a target is destroyed, the 
corresponding peak would vanish). A general expression of control law under perfect conmiunication is 

u\k) = fiiMp{xuX2,k),x„{k),ym (6) 

where all vehicles have the same prior information map Mp{xi,X2,k), and the vehicle controller is able to 
use not only its own measurements and position, but also those from all other vehicles. 

2.2    Cooperative Search using Surrogate Optimization 

Here, we attempt to apply surrogate optimization method in multi-vehicle cooperative search for stationary 
targets (28, 29, 30]. In particular, the objective function will represent the unknown real target map Mt in 
equation (3). Vehicles actuate on the system by findmg and destroymg targets, thereby "flattening" Mt. As 
each vehicle moves about and collects data, it is able to refine Mp in Equation (2), which will play the role 
of the surrogate function for the vehicles. The vehicle, however, is imable to instantaneously jump between 
locations, and has instead to move along a trajectory towards the specified point. Along the way it continues 
gathering more data, thereby potentially unproving Mp. Moreover, using the idea of merit function (detailed 
in next section), we further refine the general control law (6) to 

«*(fe) = /i(merit*(a;i,i2,fc),a;„(A;),y(fc)) (7) 

where we wish to achieve coordinated behavior via a series of well constructed merit functions. 

In this manner, the surrogate optimization method is modified to effectively become a control law: when a 
maximum's location is predicted, the controller computes the direction in which it needs to move fronrits 
current location in order to reach the desired point. Mathematically, the control law (7) can be expressed as 

«*(A:)=[arctan(|^)]   -^•(fc) (8) 

where (loi'^^oj) *s a maximum (predicted target) of the merit function merit*(a;i,a;2,fc), i-e., 

merit'(a;!„,x* ,fc) = max merit'(xi,i2,fc) (^) 

X*   —x' 
The operator [ • 1 is a quantization operation, which quantizes the angle arctan (^P^^) into one of the 

elements from the'set {0, ±45, ±90, ±135, ±180}. Finally, /e. will be a saturation function taking care of 
the maximum turn angles restriction. 

JeAu (k)) - I sgn(u<(A;))i35°, 
-135° < w*(fc) < 135° 

otherwise 

3    PPP Behavior Based Coordination 

In order to realize a meaningful level of coordination and given that we have m vehicles, where rn > 2, we 
utilize the idea of surrogate function and distance function to form certain behaviors for each vehicle. And 
therefore we name this coordination scheme as behavior based coordination. 



If the f vehicle uses surrogate map Mp to predict a target position, we say that the i"* vehicle is in 
converge behavior (abbreviated as "C"). Moreover, each vehicle will have a predefined serpentine search 
path to promise high detection probability with high search effort, which we name exhaustive search behavior 
(abbreviated as "ES"). Moreover, we extend the distance function introduced in [29] into two dunensions, 
rewriting it as 

D{xuX2,k) = j min^^{V(a;i - xu)^ + {n - la.F} (10) 

which evaluates the Euclidean distance from every map cell position (xi,a;2) to the nearest vehicles' visited 
site, where K,a:2.]"^ € K,(l),... ,a;„„(fc)} and ^vp = \x\,^,xl^,...,x^^\ is the combination of all the 
vehicles visited sites, we call this kind of distance function "Global Distance Function" (refer to Figure 2 
(a)). The distance function is a measurement of uncertamty in the sense of Euclidean distance. D{xi,X2,k) 
represents the uncertainty about the vehicle's knowledge of the terrain at k time index (in the sense of 
Euclidean distance), which is an experimental design criterion that is intended to inhibit clustering of vehicles 
and thereby to ensure that the vehicles' locus will spread all over the search terrain. We can consider that 
targets should be looked for in the most uncertain places, so a maximum of distance function D will represent 
another possible target location. Therefore, if the i"" vehicle uses a global distance function to predict target 
position, we say that the t"' vehicle is in Drive Search behavior (abbreviated as "DS"). 

Global DtoUnc* Functlea Expanded Otobai Dtatanc* FunctiOfl Expanded Global DIatanc* Function 

Figure 2: Global distance function: (a) Global distance function, (b) Expanded global distance function 
given two vehicles' planned trajectories,, (c) Expanded global distance function given three vehicles' planned 
trajectories, (d) Projection of (a), (e) Projection of (b), (f) Projection of (c). 

Here, we reformulate the PPP algorithm as first appeared in [28]. A particular construction of the series of 
merit fimction for m vehicles can be: merit^(a:i,a:2,fc) = Mp(a;i,a;2,A;),merit^(a;i,a;2,fc) = D{xi,X2,k) and 
merit'(xi,X2,A;) = D^{xi,X2,k) for 3 < i < m. D*{xi,X2,k) is called expanded global distance function 
where [iij.xsj"^ not only includes visited sites x^p, but also the planned trajectories at time k for the 
previous i- I vehicles. Examples of expanded global distance functions can be seen in Figure 2. The 
projection of distance functions (Figures 2 (d), (e) and (f)) to the Xi - x^ plane gives a more distinctive 
view of the dynamic computing of the uncertainty of the search area (notice that it makes no difierence how 
the different merit functions are assigned to each vehicle, but we need a sequential negotiation, because the 
next control force depends on the former ones; the coordination is mainly displayed in the interaction among 
vehicles and the complexity of the algorithm also Ues here). Moreover, we can see clearly the elongation of 
current trajectories due to the future path plan in these plots; it is the updating of the uncertainty map that 
solves the clustering originated from the distance function, since each vehicle is equipped with a distinct 
decision maker. 



Figure 5 gives several snapshots of one simulation where we have four vehicles doing cooperative search for 
three stationary targets as demonstrated in Figures 1 (a) and (b). As we expect, one vehicle will quickly 
enter the Gaussian peak as directed by prior information map Mp. By incorporating the sensor information 
from sampling the real target map Mt, we can see an update of Mp (a dissipation of peaks). After a vehicle 
destroys the first target along its way to the center of the tallest peak, another vehicle rapidly heads to the 
second peak. The vehicle behaves like in drive search according to the uncertainty within the cone of the 
peak until it finds the target. 

l>rlorlil«>rmallonM>|>:M («.r,li-»| Priot MbnnMao Map: M .K.r.k-40) Pfior Infornuilion Map: M (x.y,k-40) 

Figure 3: Snapshots of the update of prior information map under lCvs3DS PPP coordination with IMF 
(Ideal Map Flattening Assumption [28]). 

Surrogate optimization offers us a method to organize the previous and present sensor information, which 
results in the updated prior information map. The essence of PPP coordination is the use of predicted 
future information to balance the search effort or task allocation. The expanded global distance function is 
just one specific implementation of this idea, which efficiently manipulates the uncertamty and theretofore 
inhibits clustering introduced by the distance function. The same idea can be applied to the surrogate 
function, or some other function the vehicles take as a guidance map. We will illustrate this concept further 
in Section 4. The idea of efficient utilization of past, present and predicted fiiture information becomes the 
solid foundation of the various schemes throughout the paper. 

4    PPP Behavior Based Coordination with Prior Information 

4.1    Multiple-Attack PPP with Prior Information 

Given that we have uncertam prior information about the possible target locations Xs , and assuming we 
know the number of targets n and number of vehicles m > n (in the case n < m, we will following the same 
pattern in constructing merit functions until running out of vehicles), the past and present sensor information 
will be used to correct Mp, and the predicted future information will be used to to set up suitable maps, 
which offer suitable destinations for the following vehicles. We still implement control law (8) and (a;J,j,a;*j) 
is still the maximum (predicted target) of the t"' merit function, but with a new series of merit functions: 
ment\xi,X2,k) = Mp{xuX2,k), merit'(a;i,a:2,fc) = M^(a;i,i2,*;) given (2 < i < Ni), where Nt is the 
number of not-yet-found targets (M < n). M*(;xi,X2,k) is called expanded prior information function where 
a future IMF is implemented to delete peaks to be taken care of by previous planned vehicles (refer to Figure 
4). We also have merit'^'+^(a:i,a:2, k) = D(xuX2,k) and for Ni+2<i<m merit'(xi.xz, k) = D'{xuX2,k), 
the expanded global distance function as illustrated in Figure 2. Mp(xi,X2,k) is updated as in Equation 
(5). We call this new implementation multiple-attack PPP coordination scheme (abbreviated as MPPP). 
The illustration of the two implementations of PPP algorithm can be seen in Figure 5, where we have four 
vehicles doing cooperative search for three stationary targets as demonstrated in Figure 1 (a) and (b). The 
blue stars stand for the targets. The vehicles under new MPPP coordination spend 79 steps finding all the 
targets, while the old PPP coordination takes 139 steps in finding them. A more detailed analysis based on 
Monte Carlo simulations will be conducted in Section 4.2. 



Prior tnfornuitton Map Cxpw»d«l Prior Information Map Expand«d Prior Infornutlon Map 

Figure 4: Prior information map, k = 5 (blue circle denotes previous locus, red plus sign denotes planned 
trajectory, blue star denotes the real target position): (a) Prior information map, (b) Expanded prior 
information map given one vehicle's planned trajectory, (c) Expanded prior information map given two 
vehicles' planned trajectories, (d) Projection of (a), (e) Projectton of (b), (f) Projection of (c). 
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Figure 5: Vehicle trajectories, blue star denotes the real target position (a) ICvsSDS, PPP, IMF, (b) MPPP, 
IMF. 

4.2    Monte Carlo Simulation Results 

A Monte Carlo simulation is performed here to evaluate PPP coordination as described Section 3 and the 
new MPPP coordination in dealing with the uncertain prior information. The Monte Carlo Simulation is 
used to present a quantified analysis. We have the following assumptions: four vehicles move within a square 
area divided in a 50 x 50 grid and that area contains three targets; the vehicles are initially located at 
the four corners of the terrain (an easy implementation of exhaustive search, but not necessary for PPP 
coordination); k^ax = 625, which is the upper bound search time of exhaustive search started from four 
corners given that for simple exhaustive search we divide the map in four regions of the same size, one for 
each vehicle; vehicles have perfect communication and move at constant speed; the targets occupy random, 
fixed locations each time the simulation is run. Moreover, vehicles are assumed to be free of collision and 
the maximum turn angles are ±135 degrees. Monte Carlo simulation has been run with 50 random target 
configurations. 

Since we encode the priority of the targets as the height of the Gaussian peaks, we also assign different 



credits as indicators of the priority level of each target (3 credits for the target with the first priority level, 
2 credits for the second one and 1 credit for the target with the least priority level), therefore a successful 
mission finding all the three targets will obtain 300 credits for 50 runs of different target configurations. 
We fix the uncertainty level v, of Mp to be 4 grids, which is an ad-hoc selection, and is chosen with the 
intention of being sufficiently large with respect to the terrain size (50 x 50) to be meaningful. We assign 
the uncertainty of the prior information by setting the real target positions at |t;i,^Vi,...,Vi,2v<,3wi far 
from the center. Detection probability pa (defined as the ratio of simulations when all three targets are 
found to the total number of simulation), average of search step fi and the mission credits are chosen as the 
performance criteria. All the results refer to Figure 6. 
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Figure 6: Monte Carlo Simulation Results (a) Mission Credits VS Low Uncertainty (b) Mission Credits VS 
High Uncertainty (c) Detection Probability VS Uncertainty (d) Average Search Steps VS Low Uncertainty. 

From Figure 6, the two PPP coordination schemes are robust in the sense that all of them achieve 100% 
detection probability given the uncertainty of the prior information up to fvj (Figure 6 (c)) and much 
better than the exhaustive search in average of search steps (Figure 6 (d)). Given an uncertainty less 
than fui, MPPP coordination is the best among these three schemes since it utilizes most efficiently the 
relatively precise prior information (Figmre 6 (d)). Overall, as the uncertainty grows, the search performance 
of the PPP and MPPP coordination schemes degrades accordingly. As expected, the performance degrades 
approximately quadratically given good detection probability since a Unearly growing uncertainty radius 
leads to a quadratically larger search area (Figure 6 (d)). As the uncertainty grows beyond l.Svj, the PPP 
algorithm no longer achieves a good detection probability since the prior information is not anymore valuable 
enough to guide the search, therefore MPPP behaves worse than PPP method (Figure 6 (a) and (b)). Note 
that in those two figures that exhaustive search is not affected by uncertainty and so always obtain the same 
number of credits, in average, whereas PPP and MPPP degrade with increasing uncertainty. The advantage 
of these methods lies clearly in cases where prior information is relatively accurate. 

4.3    Scalability 

The decentralized architecture of the coordination schemes we present mainly determines the reliability of 
the system, and it is easy to expand it to incorporate more vehicles and targets. It is easy to incorporate more 
targets in the simulation since the number of targets does not affect the algorithm's complexity; however, an 
increase in the number of vehicles may increase computational complexity, especially in the sequential plan, 
i.e., the construction of the expanded global distance functions or the expanded prior information maps. 
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In particular, the communication network is the main issue for the scalability of the system. An efficient 
and reliable communication network will largely guarantee the whole performance of the group of vehicles. 
However, the algorithm is still functional in the case of constrained communication as long as we construct 
suitable merit functions (recall Equation (7)). 

The current implementations of PPP algorithm require a certain amount of communications (negotiations) 
between the vehicles. If we assume broadcasting communication, the number of communications at time 
k for vehicles exchanging individual data to update the common prior information map is m, where m is 
the number of vehicles and the data transferred include vehicle position a;^^, current sensor information 
Mt{xi^{k),xi^{k)), and target found or not information. Then, the number of communications required in 
the sequential plan for the m vehicles is ^ + ^ ~ 1. '^ ^^ require link verification. Totally, we require 
m! + ^ _ 1 communication interchanges at each step. This number, while not the same as computational 
complexity, is an indicator of it, and implies that the complexity of the entire group grows as a polynomial 
with respect to the number of vehicles. 

5    Concluding Remarks 

We present a possible solution for the multi-vehicle cooperative search problem via an adaptation of the 
surrogate optimization method. Monte Carlo simulations provide partial evidence of the feasibility of our 
schemes and yield several unportant guidelines for further research. The PPP algorithm is robust in the 
sense that it can adapt to different scenarios as long as we can smartly incorporate the predicted future 
information in generating the control force. Better choices of merit functions can be expected to boost the 
search performance. Overall, the idea of efficient utilization of past, present and predicted future information 
becomes the solid foundation of the various schemes throughout the paper. The scalability of our methods 
also illustrates the feasibility the algorithm. The merit function appears to have great potential to achieve 
better coordination. An expansion of cooperative search for moving target is not straightforward since 
the assumption of IMF is no longer practically unplementable. The mathematical model and heuristic 
coordination schemes proposed so far are a start towards the control stability analysis of the multi-vehicle 
coordination problem. 
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